Cloud liquid water path variations with temperature observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment

نویسندگان

  • Bing Lin
  • Patrick Minnis
  • Alice Fan
چکیده

[1] Because clouds play such a significant role in climate, understanding their responses to climatic temperature changes is essential to determining the overall impact of a given climate forcing. Cloud liquid water path (LWP) over tropical and midlatitude oceans has been observed to decrease with increasing cloud temperature. The presence of an ice sheet over the Arctic Ocean alters the energy and moisture exchange between the ocean and the atmospheric boundary layer and thus may affect the relationship between LWP and temperature. The variations of LWP with cloud and surface temperatures are examined in this paper using a combination of surface and satellite data taken during the 1998 Surface Heat Budget of the Arctic Ocean and the FIRE Arctic Clouds Experiments. The results show that LWP increases with temperature primarily because of an increase in cloud thickness that is enabled by the rise in surface moisture during the melt season. Cloud base heights and lifting condensation levels decrease as a result of the greater surface relative humidity and temperature. The average change rate of LWP with cloud temperature is 3.3% K , a value slightly smaller than earlier observations taken over cold midlatitude land areas. This cloud LWP feedback with temperature differs significantly from that estimated over other marine environments and should be taken into account in all climate models with explicit cloud feedbacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation and Interpretation of Microwave Cloud Signatures over the Arctic Ocean during Winter

An analysis of satellite microwave brightness temperatures at 85 GHz (37 GHz) shows that these temperatures sometimes vary by more than 30 K (15 K) within 1 or 2 days at a single location over Arctic sea ice. This variation can be seen in horizontal brightness temperature distributions with spatial scales of hundreds of kilometers, as well as in brightness temperature time series observed at a ...

متن کامل

Potential for estimating cloud liquid water path over sea ice from airborne passive microwave measurements

[1] In this paper we investigate the feasibility of determining cloud liquid water path from passive microwave measurements over sea ice. Simulations using a 32-stream plane-parallel microwave radiative transfer model indicate a consistent increase in brightness temperature attributable to cloud liquid water for conditions observed in the Arctic during the Surface Heat Budget of the Arctic (SHE...

متن کامل

SINGLE-COLUMN MODEL SIMULATIONS OF ARCTIC CLOUDINESS AND SURFACE RADIATIVE FLUXES DURING THE SURFACE HEAT BUDGET OF ARCTIC (SHEBA) EXPERIMENT By

We evaluate the ability of a typical cloud parameterization from a global model (CCM3 from NCAR) to simulate the Arctic cloudiness and longwave radiative fluxes during wintertime. Simulations are conducted with a Single-Column Model (SCM) forced with observations and reanalysis data from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Typically, the SCM overestimates the Arctic ...

متن کامل

Modeling clouds observed at SHEBA using a bulk microphysics parameterization implemented into a single-column model

[1] A single-column model coupled to a bulk microphysics parameterization (with prognostic cloud liquid water, cloud ice, rain, and snow mixing ratios) is evaluated using cloud properties retrieved at the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) during the period of 1 April to 16 May 1998. Overall, the model accurately simulates the cloud boundaries and total cloud fraction, b...

متن کامل

A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp

Cloud and boundary layer variables from the European Centre for MediumRange Weather Forecasts (ECMWF) forecast model were compared with measurements made from surface instruments and from upward looking 8 mm wavelength radar and lidar at the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp during November and December of 1997. The precipitation accumulation, near-surface winds, and surf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003